The international space station packed bed reactor experiment: capillary effects in gas-liquid two-phase flows

Author:

Taghavi MahsaORCID,Motil Brian J.ORCID,Nahra Henry,Balakotaiah Vemuri

Abstract

AbstractExperimental data on flow patterns and pressure drop in two-phase gas-liquid flows through a packed bed obtained aboard the International Space Station (ISS) are analyzed in the limit of low flow rates. Four distinct flow regimes (dispersed bubble, pulse, elongated or large bubble, and gas continuous) are observed and the transition boundaries are identified by a change in the slope of the pressure gradient versus flow rate. It is found that the pressure drop is a function of flow history with the relative magnitude of the hysteresis decreasing with increasing gas or liquid flow rates. Pressure drop (or friction factor) correlations are presented for each of the flow regimes. The capillary or interfacial contribution to the pressure gradient is found to be dominant in the gas channeling regime but comparable to the viscous contribution in the large bubble regime. Preliminary data indicating the slow accumulation of the gas in the bed in the large bubble regime over a longer time period and the intermittent nature of this regime are also presented.

Funder

NASA | Glenn Research Center

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3