Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers

Author:

Koch Caroline,Reilly-O’Donnell BenedictORCID,Gutierrez Richard,Lucarelli Carla,Ng Fu SiongORCID,Gorelik JuliaORCID,Ivanov Aleksandar P.ORCID,Edel Joshua B.ORCID

Abstract

AbstractThere is an unmet need to develop low-cost, rapid and highly multiplexed diagnostic technology platforms for quantitatively detecting blood biomarkers to advance clinical diagnostics beyond the single biomarker model. Here we perform nanopore sequencing of DNA-barcoded molecular probes engineered to recognize a panel of analytes. This allows for highly multiplexed and simultaneous quantitative detection of at least 40 targets, such as microRNAs, proteins and neurotransmitters, on the basis of the translocation dynamics of each probe as it passes through a nanopore. Our workflow is built around a commercially available MinION sequencing device, offering a one-hour turnaround time from sample preparation to results. We also demonstrate that the strategy can directly detect cardiovascular disease-associated microRNA from human serum without extraction or amplification. Due to the modularity of barcoded probes, the number and type of targets detected can be significantly expanded.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3