Digital biomarkers of mood disorders and symptom change
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Link
http://www.nature.com/articles/s41746-019-0078-0.pdf
Reference11 articles.
1. Kessler, R. C. et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) Surveys. Epidemiol. Psichiatr. Soc. 18, 23–33 (2009).
2. Mohr, D. C., Zhang, M. & Schueller, S. M. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu Rev. Clin. Psychol. 13, 23–47 (2017).
3. Torous, J. & Powell, A. C. Current research and trends in the use of smartphone applications for mood disorders. Internet Interv. 2, 169–173 (2015).
4. Garcia-Ceja, E. et al. Motor Activity Based Classification of Depression in Unipolar and Bipolar Patients in Proceedings of the 9th ACM on Multimedia Systems Conference (ACM). Accessed on 5 September 2018. http://datasets.simula.no/depresjon/ .
5. Garcia-Ceja, E. Personal Communication [11/1/2018].
Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study;JMIR mHealth and uHealth;2024-07-17
2. Harnessing Consumer Wearable Digital Biomarkers for Individualized Recognition of Postpartum Depression Using the All of Us Research Program Data Set: Cross-Sectional Study;JMIR mHealth and uHealth;2024-05-02
3. Respiratory modulation of the heart rate: A potential biomarker of cardiorespiratory function in human;Computers in Biology and Medicine;2024-05
4. Measuring algorithmic bias to analyze the reliability of AI tools that predict depression risk using smartphone sensed-behavioral data;2024-04-22
5. Measuring algorithmic bias to analyze the reliability of AI tools that predict depression risk using smartphone sensed-behavioral data;npj Mental Health Research;2024-04-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3