MyThisYourThat for interpretable identification of systematic bias in federated learning for biomedical images

Author:

Naumova KlavdiiaORCID,Devos ArnoutORCID,Karimireddy Sai Praneeth,Jaggi Martin,Hartley Mary-Anne

Abstract

AbstractDistributed collaborative learning is a promising approach for building predictive models for privacy-sensitive biomedical images. Here, several data owners (clients) train a joint model without sharing their original data. However, concealed systematic biases can compromise model performance and fairness. This study presents MyThisYourThat (MyTH) approach, which adapts an interpretable prototypical part learning network to a distributed setting, enabling each client to visualize feature differences learned by others on their own image: comparing one client’s 'This’ with others’ 'That’. Our setting demonstrates four clients collaboratively training two diagnostic classifiers on a benchmark X-ray dataset. Without data bias, the global model reaches 74.14% balanced accuracy for cardiomegaly and 74.08% for pleural effusion. We show that with systematic visual bias in one client, the performance of global models drops to near-random. We demonstrate how differences between local and global prototypes reveal biases and allow their visualization on each client’s data without compromising privacy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3