Clinical subphenotypes in COVID-19: derivation, validation, prediction, temporal patterns, and interaction with social determinants of health

Author:

Su ChangORCID,Zhang Yongkang,Flory James H.,Weiner Mark G.ORCID,Kaushal RainuORCID,Schenck Edward J.ORCID,Wang FeiORCID

Abstract

AbstractThe coronavirus disease 2019 (COVID-19) is heterogeneous and our understanding of the biological mechanisms of host response to the viral infection remains limited. Identification of meaningful clinical subphenotypes may benefit pathophysiological study, clinical practice, and clinical trials. Here, our aim was to derive and validate COVID-19 subphenotypes using machine learning and routinely collected clinical data, assess temporal patterns of these subphenotypes during the pandemic course, and examine their interaction with social determinants of health (SDoH). We retrospectively analyzed 14418 COVID-19 patients in five major medical centers in New York City (NYC), between March 1 and June 12, 2020. Using clustering analysis, 4 biologically distinct subphenotypes were derived in the development cohort (N = 8199). Importantly, the identified subphenotypes were highly predictive of clinical outcomes (especially 60-day mortality). Sensitivity analyses in the development cohort, and rederivation and prediction in the internal (N = 3519) and external (N = 3519) validation cohorts confirmed the reproducibility and usability of the subphenotypes. Further analyses showed varying subphenotype prevalence across the peak of the outbreak in NYC. We also found that SDoH specifically influenced mortality outcome in Subphenotype IV, which is associated with older age, worse clinical manifestation, and high comorbidity burden. Our findings may lead to a better understanding of how COVID-19 causes disease in different populations and potentially benefit clinical trial development. The temporal patterns and SDoH implications of the subphenotypes may add insights to health policy to reduce social disparity in the pandemic.

Funder

Patient-Centered Outcomes Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3