Synthetic electronic health records generated with variational graph autoencoders

Author:

Nikolentzos GiannisORCID,Vazirgiannis Michalis,Xypolopoulos Christos,Lingman MarkusORCID,Brandt Erik G.

Abstract

AbstractData-driven medical care delivery must always respect patient privacy—a requirement that is not easily met. This issue has impeded improvements to healthcare software and has delayed the long-predicted prevalence of artificial intelligence in healthcare. Until now, it has been very difficult to share data between healthcare organizations, resulting in poor statistical models due to unrepresentative patient cohorts. Synthetic data, i.e., artificial but realistic electronic health records, could overcome the drought that is troubling the healthcare sector. Deep neural network architectures, in particular, have shown an incredible ability to learn from complex data sets and generate large amounts of unseen data points with the same statistical properties as the training data. Here, we present a generative neural network model that can create synthetic health records with realistic timelines. These clinical trajectories are generated on a per-patient basis and are represented as linear-sequence graphs of clinical events over time. We use a variational graph autoencoder (VGAE) to generate synthetic samples from real-world electronic health records. Our approach generates health records not seen in the training data. We show that these artificial patient trajectories are realistic and preserve patient privacy and can therefore support the safe sharing of data across organizations.

Funder

Agence Nationale de la Recherche

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3