Abstract
AbstractSubstantial interest and investment in clinical artificial intelligence (AI) research has not resulted in widespread translation to deployed AI solutions. Current attention has focused on bias and explainability in AI algorithm development, external validity and model generalisability, and lack of equity and representation in existing data. While of great importance, these considerations also reflect a model-centric approach seen in published clinical AI research, which focuses on optimising architecture and performance of an AI model on best available datasets. However, even robustly built models using state-of-the-art algorithms may fail once tested in realistic environments due to unpredictability of real-world conditions, out-of-dataset scenarios, characteristics of deployment infrastructure, and lack of added value to clinical workflows relative to cost and potential clinical risks. In this perspective, we define a vertically integrated approach to AI development that incorporates early, cross-disciplinary, consideration of impact evaluation, data lifecycles, and AI production, and explore its implementation in two contrasting AI development pipelines: a scalable “AI factory” (Mayo Clinic, Rochester, United States), and an end-to-end cervical cancer screening platform for resource poor settings (Paps AI, Mbarara, Uganda). We provide practical recommendations for implementers, and discuss future challenges and novel approaches (including a decentralised federated architecture being developed in the NHS (AI4VBH, London, UK)). Growth in global clinical AI research continues unabated, and introduction of vertically integrated teams and development practices can increase the translational potential of future clinical AI projects.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Reference68 articles.
1. Zhang, J. et al. An interactive dashboard to track themes, development maturity, and global equity in clinical artificial intelligence research. Lancet Digital Health 4, e212–e213 (2022).
2. Pretnik, R. & Krotz, L. Healthcare AI 2020. https://klasresearch.com/report/healthcare-ai-2020-investment-continuesbut-results-slower-than-expected-a-decision-insights-report/1443 (2020).
3. Rob, B. et al. Top of Mind for Top Health Systems. https://paddahealth.com/wpcontent/uploads/2020/11/Top_of_Mind_for_Top_Health_Systems_2021_CCM_Reports_FINAL.pdf (2020).
4. Balakrishnan, T., Chui, M., Hall, B. & Henke, N. The State of AI in 2020. https://www.mckinsey.com/business-functions/quantumblack/ourinsights/global-survey-the-state-of-ai-in-2020 (2020).
5. Lavender, J. Venture Pulse: Investment in AI for healthcare soars. https://home.kpmg/xx/en/home/insights/2018/04/venture-pulse-q1-18-globalanalysis-of-venture-funding.html (2018).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献