Moving towards vertically integrated artificial intelligence development

Author:

Zhang JoeORCID,Budhdeo SanjayORCID,William WasswaORCID,Cerrato Paul,Shuaib HarisORCID,Sood Harpreet,Ashrafian HutanORCID,Halamka JohnORCID,Teo James T.ORCID

Abstract

AbstractSubstantial interest and investment in clinical artificial intelligence (AI) research has not resulted in widespread translation to deployed AI solutions. Current attention has focused on bias and explainability in AI algorithm development, external validity and model generalisability, and lack of equity and representation in existing data. While of great importance, these considerations also reflect a model-centric approach seen in published clinical AI research, which focuses on optimising architecture and performance of an AI model on best available datasets. However, even robustly built models using state-of-the-art algorithms may fail once tested in realistic environments due to unpredictability of real-world conditions, out-of-dataset scenarios, characteristics of deployment infrastructure, and lack of added value to clinical workflows relative to cost and potential clinical risks. In this perspective, we define a vertically integrated approach to AI development that incorporates early, cross-disciplinary, consideration of impact evaluation, data lifecycles, and AI production, and explore its implementation in two contrasting AI development pipelines: a scalable “AI factory” (Mayo Clinic, Rochester, United States), and an end-to-end cervical cancer screening platform for resource poor settings (Paps AI, Mbarara, Uganda). We provide practical recommendations for implementers, and discuss future challenges and novel approaches (including a decentralised federated architecture being developed in the NHS (AI4VBH, London, UK)). Growth in global clinical AI research continues unabated, and introduction of vertically integrated teams and development practices can increase the translational potential of future clinical AI projects.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Reference68 articles.

1. Zhang, J. et al. An interactive dashboard to track themes, development maturity, and global equity in clinical artificial intelligence research. Lancet Digital Health 4, e212–e213 (2022).

2. Pretnik, R. & Krotz, L. Healthcare AI 2020. https://klasresearch.com/report/healthcare-ai-2020-investment-continuesbut-results-slower-than-expected-a-decision-insights-report/1443 (2020).

3. Rob, B. et al. Top of Mind for Top Health Systems. https://paddahealth.com/wpcontent/uploads/2020/11/Top_of_Mind_for_Top_Health_Systems_2021_CCM_Reports_FINAL.pdf (2020).

4. Balakrishnan, T., Chui, M., Hall, B. & Henke, N. The State of AI in 2020. https://www.mckinsey.com/business-functions/quantumblack/ourinsights/global-survey-the-state-of-ai-in-2020 (2020).

5. Lavender, J. Venture Pulse: Investment in AI for healthcare soars. https://home.kpmg/xx/en/home/insights/2018/04/venture-pulse-q1-18-globalanalysis-of-venture-funding.html (2018).

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3