Abstract
AbstractEvidence regarding the association between physical activity and Parkinson’s disease (PD) risk is generally limited due to the use of self-report questionnaires. We aimed to quantify the separate and combined effects of accelerometer-measured light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), sedentary time and exercise timing with incident PD. 96,422 participants without prior PD and with usable accelerometer data were included from UK Biobank. Time spent in sedentary activity, LPA, MVPA, and exercise timing were estimated using machine learning models. The study outcome was incident PD. Over a median follow-up duration of 6.8 years, 313 participants developed PD. There was a L-shaped association for LPA and MVPA, and a reversed L-shaped association for sedentary time, with the risk of incident PD (all P for nonlinearity < 0.001). Similar trends were found across three time-windows (morning, midday-afternoon, and evening). Compared with those with both low LPA (<3.89 h/day) and low MVPA (<0.27 h/day), the adjusted HR (95% CI) of PD risk was 0.49 (0.36–0.66), 0.19 (0.36–0.66) and 0.13 (0.09–0.18), respectively, for participants with high MVPA only, high LPA only, and both high LPA and high MVPA. Moreover, participants with both low LPA and high sedentary time (≥9.41 h/day) (adjusted HR, 5.59; 95% CI: 4.10–7.61), and those with both low MVPA and high sedentary time (adjusted HR, 3.93; 95% CI: 2.82–5.49) had the highest risk of incident PD. In conclusion, regardless of exercise timing (morning, midday-afternoon, and evening), there was an inverse association for accelerometer-measured MVPA and LPA, and a positive association for sedentary time, with incident PD.
Funder
National Natural Science Foundation of China
The study was also supported by the National Key Research and Development Program
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Reference41 articles.
1. Kalia, L. V. & Lang, A. E. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat. Rev. Neurol. 12, 65–66 (2016).
2. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).
3. Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D. & Mandel, J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol. 26, S1–S58 (2011).
4. GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 939–953 (2018).
5. Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131 (1985).