Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes

Author:

Norgeot Beau,Muenzen KathleenORCID,Peterson Thomas A.ORCID,Fan Xuancheng,Glicksberg Benjamin S.ORCID,Schenk GundolfORCID,Rutenberg Eugenia,Oskotsky Boris,Sirota Marina,Yazdany Jinoos,Schmajuk Gabriela,Ludwig Dana,Goldstein Theodore,Butte Atul J.ORCID

Abstract

AbstractThere is a great and growing need to ascertain what exactly is the state of a patient, in terms of disease progression, actual care practices, pathology, adverse events, and much more, beyond the paucity of data available in structured medical record data. Ascertaining these harder-to-reach data elements is now critical for the accurate phenotyping of complex traits, detection of adverse outcomes, efficacy of off-label drug use, and longitudinal patient surveillance. Clinical notes often contain the most detailed and relevant digital information about individual patients, the nuances of their diseases, the treatment strategies selected by physicians, and the resulting outcomes. However, notes remain largely unused for research because they contain Protected Health Information (PHI), which is synonymous with individually identifying data. Previous clinical note de-identification approaches have been rigid and still too inaccurate to see any substantial real-world use, primarily because they have been trained with too small medical text corpora. To build a new de-identification tool, we created the largest manually annotated clinical note corpus for PHI and develop a customizable open-source de-identification software called Philter (“Protected Health Information filter”). Here we describe the design and evaluation of Philter, and show how it offers substantial real-world improvements over prior methods.

Funder

Achievement Rewards for College Scientists Foundation

Silicon Valley Community Foundation

U.S. Department of Health & Human Services | National Institutes of Health

U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine

U.S. Department of Health & Human Services | Agency for Healthcare Research and Quality

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3