Deep learning based automatic detection algorithm for acute intracranial haemorrhage: a pivotal randomized clinical trial

Author:

Yun Tae JinORCID,Choi Jin WookORCID,Han Miran,Jung Woo Sang,Choi Seung Hong,Yoo Roh-Eul,Hwang In Pyeong

Abstract

AbstractAcute intracranial haemorrhage (AIH) is a potentially life-threatening emergency that requires prompt and accurate assessment and management. This study aims to develop and validate an artificial intelligence (AI) algorithm for diagnosing AIH using brain-computed tomography (CT) images. A retrospective, multi-reader, pivotal, crossover, randomised study was performed to validate the performance of an AI algorithm was trained using 104,666 slices from 3010 patients. Brain CT images (12,663 slices from 296 patients) were evaluated by nine reviewers belonging to one of the three subgroups (non-radiologist physicians, n = 3; board-certified radiologists, n = 3; and neuroradiologists, n = 3) with and without the aid of our AI algorithm. Sensitivity, specificity, and accuracy were compared between AI-unassisted and AI-assisted interpretations using the chi-square test. Brain CT interpretation with AI assistance results in significantly higher diagnostic accuracy than that without AI assistance (0.9703 vs. 0.9471, p < 0.0001, patient-wise). Among the three subgroups of reviewers, non-radiologist physicians demonstrate the greatest improvement in diagnostic accuracy for brain CT interpretation with AI assistance compared to that without AI assistance. For board-certified radiologists, the diagnostic accuracy for brain CT interpretation is significantly higher with AI assistance than without AI assistance. For neuroradiologists, although brain CT interpretation with AI assistance results in a trend for higher diagnostic accuracy compared to that without AI assistance, the difference does not reach statistical significance. For the detection of AIH, brain CT interpretation with AI assistance results in better diagnostic performance than that without AI assistance, with the most significant improvement observed for non-radiologist physicians.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3