The diagnostic and triage accuracy of digital and online symptom checker tools: a systematic review

Author:

Wallace WilliamORCID,Chan Calvin,Chidambaram Swathikan,Hanna Lydia,Iqbal Fahad Mujtaba,Acharya Amish,Normahani Pasha,Ashrafian Hutan,Markar Sheraz R.,Sounderajah VikneshORCID,Darzi AraORCID

Abstract

AbstractDigital and online symptom checkers are an increasingly adopted class of health technologies that enable patients to input their symptoms and biodata to produce a set of likely diagnoses and associated triage advice. However, concerns regarding the accuracy and safety of these symptom checkers have been raised. This systematic review evaluates the accuracy of symptom checkers in providing diagnoses and appropriate triage advice. MEDLINE and Web of Science were searched for studies that used either real or simulated patients to evaluate online or digital symptom checkers. The primary outcomes were the diagnostic and triage accuracy of the symptom checkers. The QUADAS-2 tool was used to assess study quality. Of the 177 studies retrieved, 10 studies met the inclusion criteria. Researchers evaluated the accuracy of symptom checkers using a variety of medical conditions, including ophthalmological conditions, inflammatory arthritides and HIV. A total of 50% of the studies recruited real patients, while the remainder used simulated cases. The diagnostic accuracy of the primary diagnosis was low across included studies (range: 19–37.9%) and varied between individual symptom checkers, despite consistent symptom data input. Triage accuracy (range: 48.8–90.1%) was typically higher than diagnostic accuracy. Overall, the diagnostic and triage accuracy of symptom checkers are variable and of low accuracy. Given the increasing push towards adopting this class of technologies across numerous health systems, this study demonstrates that reliance upon symptom checkers could pose significant patient safety hazards. Large-scale primary studies, based upon real-world data, are warranted to demonstrate the adequate performance of these technologies in a manner that is non-inferior to current best practices. Moreover, an urgent assessment of how these systems are regulated and implemented is required.

Funder

NIHR Imperial Biomedical Research Centre

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3