Development and external validation of a pretrained deep learning model for the prediction of non-accidental trauma

Author:

Huang David,Cogill Steven,Hsia Renee Y.,Yang Samuel,Kim DavidORCID

Abstract

AbstractNon-accidental trauma (NAT) is deadly and difficult to predict. Transformer models pretrained on large datasets have recently produced state of the art performance on diverse prediction tasks, but the optimal pretraining strategies for diagnostic predictions are not known. Here we report the development and external validation of Pretrained and Adapted BERT for Longitudinal Outcomes (PABLO), a transformer-based deep learning model with multitask clinical pretraining, to identify patients who will receive a diagnosis of NAT in the next year. We develop a clinical interface to visualize patient trajectories, model predictions, and individual risk factors. In two comprehensive statewide databases, approximately 1% of patients experience NAT within one year of prediction. PABLO predicts NAT events with area under the receiver operating characteristic curve (AUROC) of 0.844 (95% CI 0.838–0.851) in the California test set, and 0.849 (95% CI 0.846–0.851) on external validation in Florida, outperforming comparator models. Multitask pretraining significantly improves model performance. Attribution analysis shows substance use, psychiatric, and injury diagnoses, in the context of age and racial demographics, as influential predictors of NAT. As a clinical decision support system, PABLO can identify high-risk patients and patient-specific risk factors, which can be used to target secondary screening and preventive interventions at the point-of-care.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3