An interpretable artificial intelligence system for detecting risk factors of gastroesophageal variceal bleeding

Author:

Wang Jing,Wang Zhengqiang,Chen Mingkai,Xiao Yong,Chen Shi,Wu Lianlian,Yao Liwen,Jiang Xiaoda,Li Jiao,Xu Ming,Lin Mengjuan,Zhu Yijie,Luo Renquan,Zhang Chenxia,Li Xun,Yu HonggangORCID

Abstract

AbstractBleeding risk factors for gastroesophageal varices (GEV) detected by endoscopy in cirrhotic patients determine the prophylactical treatment patients will undergo in the following 2 years. We propose a methodology for measuring the risk factors. We create an artificial intelligence system (ENDOANGEL-GEV) containing six models to segment GEV and to classify the grades (grades 1–3) and red color signs (RC, RC0-RC3) of varices. It also summarizes changes in the above results with region in real time. ENDOANGEL-GEV is trained using 6034 images from 1156 cirrhotic patients across three hospitals (dataset 1) and validated on multicenter datasets with 11009 images from 141 videos (dataset 2) and in a prospective study recruiting 161 cirrhotic patients from Renmin Hospital of Wuhan University (dataset 3). In dataset 1, ENDOANGEL-GEV achieves intersection over union values of 0.8087 for segmenting esophageal varices and 0.8141 for gastric varices. In dataset 2, the system maintains fairly accuracy across images from three hospitals. In dataset 3, ENDOANGEL-GEV surpasses attended endoscopists in detecting RC of GEV and classifying grades (p < 0.001). When ranking the risk of patients combined with the Child‒Pugh score, ENDOANGEL-GEV outperforms endoscopists for esophageal varices (p < 0.001) and shows comparable performance for gastric varices (p = 0.152). Compared with endoscopists, ENDOANGEL-GEV may help 12.31% (16/130) more patients receive the right intervention. We establish an interpretable system for the endoscopic diagnosis and risk stratification of GEV. It will assist in detecting the first bleeding risk factors accurately and expanding the scope of quantitative measurement of diseases.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3