Abstract
AbstractExcess alcohol use is an important determinant of death and disability. Machine learning (ML)-driven interventions leveraging smart-breathalyzer data may help reduce these harms. We developed a digital phenotype of long-term smart-breathalyzer behavior to predict individuals’ breath alcohol concentration (BrAC) levels trained on data from a smart breathalyzer. We analyzed roughly one million datapoints from 33,452 users of a commercial smart-breathalyzer device, collected between 2013 and 2017. For validation, we analyzed the associations between state-level observed smart-breathalyzer BrAC levels and impaired-driving motor vehicle death rates. Behavioral, geolocation-based, and time-series-derived features were fed to an ML algorithm using training (70% of the cohort), development (10% of the cohort), and test (20% of the cohort) sets to predict the likelihood of a BrAC exceeding the legal driving limit (0.08 g/dL). States with higher average BrAC levels had significantly higher alcohol-related driving death rates, adjusted for the number of users per state B (SE) = 91.38 (15.16), p < 0.01. In the independent test set, the ML algorithm predicted the likelihood of a given user-initiated BrAC sample exceeding BrAC ≥ 0.08 g/dL, with an area under the curve (AUC) of 85%. Highly predictive features included users’ prior BrAC trends, subjective estimation of their BrAC (or AUC = 82% without the self-estimate), engagement and self-monitoring, time since the last measure, and hour of the day. In conclusion, an ML algorithm successfully quantified a digital phenotype of behavior, predicting naturalistic BrAC levels exceeding 0.08 g/dL (a threshold associated with alcohol-related harm) with good discrimination capability. This result establishes a foundation for future research on precision behavioral medicine digital health interventions using smart breathalyzers and passive monitoring approaches.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Reference41 articles.
1. World Health Organization. Global Status Report on Alcohol and Health (World Health Organization, 2018).
2. Mokdad, A. H. et al. Global burden of diseases, injuries, and risk factors for young people’s health during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 387, 2383–2401 (2016).
3. Griswold, M. G. et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392, 1015–1035 (2018).
4. Bae, S., Chung, T., Ferreira, D., Dey, A. K. & Suffoletto, B. Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addict. Behav. 83, 42–47 (2018).
5. Governors Highway Safety Association. Alcohol impaired driving. http://www.ghsa.org/state-laws/issues/Alcohol-Impaired-Driving (2019).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献