Systematic review of deep learning image analyses for the diagnosis and monitoring of skin disease

Author:

Choy Shern PingORCID,Kim Byung Jin,Paolino Alexandra,Tan Wei Ren,Lim Sarah Man Lin,Seo Jessica,Tan Sze Ping,Francis Luc,Tsakok Teresa,Simpson Michael,Barker Jonathan N. W. N.,Lynch Magnus D.,Corbett Mark S.,Smith Catherine H.,Mahil Satveer K.ORCID

Abstract

AbstractSkin diseases affect one-third of the global population, posing a major healthcare burden. Deep learning may optimise healthcare workflows through processing skin images via neural networks to make predictions. A focus of deep learning research is skin lesion triage to detect cancer, but this may not translate to the wider scope of >2000 other skin diseases. We searched for studies applying deep learning to skin images, excluding benign/malignant lesions (1/1/2000-23/6/2022, PROSPERO CRD42022309935). The primary outcome was accuracy of deep learning algorithms in disease diagnosis or severity assessment. We modified QUADAS-2 for quality assessment. Of 13,857 references identified, 64 were included. The most studied diseases were acne, psoriasis, eczema, rosacea, vitiligo, urticaria. Deep learning algorithms had high specificity and variable sensitivity in diagnosing these conditions. Accuracy of algorithms in diagnosing acne (median 94%, IQR 86–98; n = 11), rosacea (94%, 90–97; n = 4), eczema (93%, 90–99; n = 9) and psoriasis (89%, 78–92; n = 8) was high. Accuracy for grading severity was highest for psoriasis (range 93–100%, n = 2), eczema (88%, n = 1), and acne (67–86%, n = 4). However, 59 (92%) studies had high risk-of-bias judgements and 62 (97%) had high-level applicability concerns. Only 12 (19%) reported participant ethnicity/skin type. Twenty-four (37.5%) evaluated the algorithm in an independent dataset, clinical setting or prospectively. These data indicate potential of deep learning image analysis in diagnosing and monitoring common skin diseases. Current research has important methodological/reporting limitations. Real-world, prospectively-acquired image datasets with external validation/testing will advance deep learning beyond the current experimental phase towards clinically-useful tools to mitigate rising health and cost impacts of skin disease.

Funder

DH | National Institute for Health Research

Psoriasis Association

RCUK | Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3