Autoencoders for sample size estimation for fully connected neural network classifiers

Author:

Gulamali Faris F.ORCID,Sawant Ashwin S.ORCID,Kovatch PatriciaORCID,Glicksberg BenjaminORCID,Charney Alexander,Nadkarni Girish N.ORCID,Oermann Eric

Abstract

AbstractSample size estimation is a crucial step in experimental design but is understudied in the context of deep learning. Currently, estimating the quantity of labeled data needed to train a classifier to a desired performance, is largely based on prior experience with similar models and problems or on untested heuristics. In many supervised machine learning applications, data labeling can be expensive and time-consuming and would benefit from a more rigorous means of estimating labeling requirements. Here, we study the problem of estimating the minimum sample size of labeled training data necessary for training computer vision models as an exemplar for other deep learning problems. We consider the problem of identifying the minimal number of labeled data points to achieve a generalizable representation of the data, a minimum converging sample (MCS). We use autoencoder loss to estimate the MCS for fully connected neural network classifiers. At sample sizes smaller than the MCS estimate, fully connected networks fail to distinguish classes, and at sample sizes above the MCS estimate, generalizability strongly correlates with the loss function of the autoencoder. We provide an easily accessible, code-free, and dataset-agnostic tool to estimate sample sizes for fully connected networks. Taken together, our findings suggest that MCS and convergence estimation are promising methods to guide sample size estimates for data collection and labeling prior to training deep learning models in computer vision.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3