Evaluation of stenoses using AI video models applied to coronary angiography

Author:

Labrecque Langlais ÉlodieORCID,Corbin Denis,Tastet Olivier,Hayek Ahmad,Doolub GeminaORCID,Mrad SebastiánORCID,Tardif Jean-ClaudeORCID,Tanguay Jean-François,Marquis-Gravel GuillaumeORCID,Tison Geoffrey H.ORCID,Kadoury Samuel,Le William,Gallo Richard,Lesage FredericORCID,Avram RobertORCID

Abstract

AbstractThe coronary angiogram is the gold standard for evaluating the severity of coronary artery disease stenoses. Presently, the assessment is conducted visually by cardiologists, a method that lacks standardization. This study introduces DeepCoro, a ground-breaking AI-driven pipeline that integrates advanced vessel tracking and a video-based Swin3D model that was trained and validated on a dataset comprised of 182,418 coronary angiography videos spanning 5 years. DeepCoro achieved a notable precision of 71.89% in identifying coronary artery segments and demonstrated a mean absolute error of 20.15% (95% CI: 19.88–20.40) and a classification AUROC of 0.8294 (95% CI: 0.8215–0.8373) in stenosis percentage prediction compared to traditional cardiologist assessments. When compared to two expert interventional cardiologists, DeepCoro achieved lower variability than the clinical reports (19.09%; 95% CI: 18.55–19.58 vs 21.00%; 95% CI: 20.20–21.76, respectively). In addition, DeepCoro can be fine-tuned to a different modality type. When fine-tuned on quantitative coronary angiography assessments, DeepCoro attained an even lower mean absolute error of 7.75% (95% CI: 7.37–8.07), underscoring the reduced variability inherent to this method. This study establishes DeepCoro as an innovative video-based, adaptable tool in coronary artery disease analysis, significantly enhancing the precision and reliability of stenosis assessment.

Funder

Montreal Heart Institute Research Centre, the Montreal Heart Institute Foundation, the Des Groseillers-Bérard Interventional Cardiology Research Chair

Publisher

Springer Science and Business Media LLC

Reference55 articles.

1. Langlais-Labrecque, É. et al. Novel artificial intelligence applications in cardiology: current landscape, limitations, and the road to real-world applications. J. Cardiovasc. Transl. Res. 16, 513–525 (2023).

2. Jungiewicz, M. et al. Vision Transformer in stenosis detection of coronary arteries. Expert Syst. Appl. 228, 120234 (2023).

3. Zhou, C. et al. Automated deep learning analysis of angiography video sequences for coronary artery disease. Preprint at https://arxiv.org/abs/2101.12505 (2021).

4. Grech, E. Pathophysiology and investigation of coronary artery disease. In ABC of Interventional Cardiology. 2nd edn (BMJ Books, Oxford, 2011).

5. Avram, R. et al. CathAI: fully automated coronary angiography interpretation and stenosis estimation. NPJ Digital Med. 6, 142 (2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3