Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias

Author:

Gadaleta MatteoORCID,Harrington Patrick,Barnhill Eric,Hytopoulos Evangelos,Turakhia Mintu P.,Steinhubl Steven R.ORCID,Quer GiorgioORCID

Abstract

AbstractEarly identification of atrial fibrillation (AF) can reduce the risk of stroke, heart failure, and other serious cardiovascular outcomes. However, paroxysmal AF may not be detected even after a two-week continuous monitoring period. We developed a model to quantify the risk of near-term AF in a two-week period, based on AF-free ECG intervals of up to 24 h from 459,889 patch-based ambulatory single-lead ECG (modified lead II) recordings of up to 14 days. A deep learning model was used to integrate ECG morphology data with demographic and heart rhythm features toward AF prediction. Observing a 1-day AF-free ECG recording, the model with deep learning features produced the most accurate prediction of near-term AF with an area under the curve AUC = 0.80 (95% confidence interval, CI = 0.79–0.81), significantly improving discrimination compared to demographic metrics alone (AUC 0.67; CI = 0.66–0.68). Our model was able to predict incident AF over a two-week time frame with high discrimination, based on AF-free single-lead ECG recordings of various lengths. Application of the model may enable a digital strategy for improving diagnostic capture of AF by risk stratifying individuals with AF-negative ambulatory monitoring for prolonged or recurrent monitoring, potentially leading to more rapid initiation of treatment.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Aging

U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3