A standardized framework for risk-based assessment of treatment effect heterogeneity in observational healthcare databases

Author:

Rekkas AlexandrosORCID,van Klaveren David,Ryan Patrick B.,Steyerberg Ewout W.ORCID,Kent David M.ORCID,Rijnbeek Peter R.

Abstract

AbstractTreatment effects are often anticipated to vary across groups of patients with different baseline risk. The Predictive Approaches to Treatment Effect Heterogeneity (PATH) statement focused on baseline risk as a robust predictor of treatment effect and provided guidance on risk-based assessment of treatment effect heterogeneity in a randomized controlled trial. The aim of this study is to extend this approach to the observational setting using a standardized scalable framework. The proposed framework consists of five steps: (1) definition of the research aim, i.e., the population, the treatment, the comparator and the outcome(s) of interest; (2) identification of relevant databases; (3) development of a prediction model for the outcome(s) of interest; (4) estimation of relative and absolute treatment effect within strata of predicted risk, after adjusting for observed confounding; (5) presentation of the results. We demonstrate our framework by evaluating heterogeneity of the effect of thiazide or thiazide-like diuretics versus angiotensin-converting enzyme inhibitors on three efficacy and nine safety outcomes across three observational databases. We provide a publicly available R software package for applying this framework to any database mapped to the Observational Medical Outcomes Partnership Common Data Model. In our demonstration, patients at low risk of acute myocardial infarction receive negligible absolute benefits for all three efficacy outcomes, though they are more pronounced in the highest risk group, especially for acute myocardial infarction. Our framework allows for the evaluation of differential treatment effects across risk strata, which offers the opportunity to consider the benefit-harm trade-off between alternative treatments.

Funder

Innovative Medicines Initiative

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3