Development and validation of a smartphone-based deep-learning-enabled system to detect middle-ear conditions in otoscopic images

Author:

Dubois ConstanceORCID,Eigen David,Simon François,Couloigner Vincent,Gormish MichaelORCID,Chalumeau Martin,Schmoll Laurent,Cohen Jérémie F.ORCID

Abstract

AbstractMiddle-ear conditions are common causes of primary care visits, hearing impairment, and inappropriate antibiotic use. Deep learning (DL) may assist clinicians in interpreting otoscopic images. This study included patients over 5 years old from an ambulatory ENT practice in Strasbourg, France, between 2013 and 2020. Digital otoscopic images were obtained using a smartphone-attached otoscope (Smart Scope, Karl Storz, Germany) and labeled by a senior ENT specialist across 11 diagnostic classes (reference standard). An Inception-v2 DL model was trained using 41,664 otoscopic images, and its diagnostic accuracy was evaluated by calculating class-specific estimates of sensitivity and specificity. The model was then incorporated into a smartphone app called i-Nside. The DL model was evaluated on a validation set of 3,962 images and a held-out test set comprising 326 images. On the validation set, all class-specific estimates of sensitivity and specificity exceeded 98%. On the test set, the DL model achieved a sensitivity of 99.0% (95% confidence interval: 94.5–100) and a specificity of 95.2% (91.5–97.6) for the binary classification of normal vs. abnormal images; wax plugs were detected with a sensitivity of 100% (94.6–100) and specificity of 97.7% (95.0–99.1); other class-specific estimates of sensitivity and specificity ranged from 33.3% to 92.3% and 96.0% to 100%, respectively. We present an end-to-end DL-enabled system able to achieve expert-level diagnostic accuracy for identifying normal tympanic aspects and wax plugs within digital otoscopic images. However, the system’s performance varied for other middle-ear conditions. Further prospective validation is necessary before wider clinical deployment.

Funder

“Sauver la Vie”

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3