Relay learning: a physically secure framework for clinical multi-site deep learning

Author:

Bo Zi-HaoORCID,Guo Yuchen,Lyu Jinhao,Liang HengruiORCID,He JianxingORCID,Deng Shijie,Xu FengORCID,Lou Xin,Dai QionghaiORCID

Abstract

AbstractBig data serves as the cornerstone for constructing real-world deep learning systems across various domains. In medicine and healthcare, a single clinical site lacks sufficient data, thus necessitating the involvement of multiple sites. Unfortunately, concerns regarding data security and privacy hinder the sharing and reuse of data across sites. Existing approaches to multi-site clinical learning heavily depend on the security of the network firewall and system implementation. To address this issue, we propose Relay Learning, a secure deep-learning framework that physically isolates clinical data from external intruders while still leveraging the benefits of multi-site big data. We demonstrate the efficacy of Relay Learning in three medical tasks of different diseases and anatomical structures, including structure segmentation of retina fundus, mediastinum tumors diagnosis, and brain midline localization. We evaluate Relay Learning by comparing its performance to alternative solutions through multi-site validation and external validation. Incorporating a total of 41,038 medical images from 21 medical hosts, including 7 external hosts, with non-uniform distributions, we observe significant performance improvements with Relay Learning across all three tasks. Specifically, it achieves an average performance increase of 44.4%, 24.2%, and 36.7% for retinal fundus segmentation, mediastinum tumor diagnosis, and brain midline localization, respectively. Remarkably, Relay Learning even outperforms central learning on external test sets. In the meanwhile, Relay Learning keeps data sovereignty locally without cross-site network connections. We anticipate that Relay Learning will revolutionize clinical multi-site collaboration and reshape the landscape of healthcare in the future.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3