Abstract
AbstractAutomated online cognitive assessments are set to revolutionise clinical research and healthcare. However, their applicability for Parkinson’s Disease (PD) and REM Sleep Behavioural Disorder (RBD), a strong PD precursor, is underexplored. Here, we developed an online battery to measure early cognitive changes in PD and RBD. Evaluating 19 candidate tasks showed significant global accuracy deficits in PD (0.65 SD, p = 0.003) and RBD (0.45 SD, p = 0.027), driven by memory, language, attention and executive underperformance, and global reaction time deficits in PD (0.61 SD, p = 0.001). We identified a brief 20-min battery that had sensitivity to deficits across these cognitive domains while being robust to the device used. This battery was more sensitive to early-stage and prodromal deficits than the supervised neuropsychological scales. It also diverged from those scales, capturing additional cognitive factors sensitive to PD and RBD. This technology offers an economical and scalable method for assessing these populations that can complement standard supervised practices.
Funder
Parkinson’s UK
Oxford Parkinson’s Disease Centre
NIHR Oxford Biomedical Research Centre, Oxford
RCUK | Medical Research Council
UK Research and Innovation Centre for Doctoral Training in Artificial Intelligence for Healthcare http://ai4health.io
National Institute of Healthcare Research (NIHR) Oxford Biomedical Research Centre (BRC) and a McDonnell Foundation grant
NIHR Biomedical Research Centre at Imperial College London
Parkinson’s UK and the Oxford Biomedical Research Centre, Oxford
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献