Skin Tone Analysis for Representation in Educational Materials (STAR-ED) using machine learning

Author:

Tadesse Girmaw Abebe,Cintas Celia,Varshney Kush R.,Staar Peter,Agunwa Chinyere,Speakman Skyler,Jia Justin,Bailey Elizabeth E.,Adelekun Ademide,Lipoff Jules B.,Onyekaba Ginikanwa,Lester Jenna C.,Rotemberg VeronicaORCID,Zou JamesORCID,Daneshjou RoxanaORCID

Abstract

AbstractImages depicting dark skin tones are significantly underrepresented in the educational materials used to teach primary care physicians and dermatologists to recognize skin diseases. This could contribute to disparities in skin disease diagnosis across different racial groups. Previously, domain experts have manually assessed textbooks to estimate the diversity in skin images. Manual assessment does not scale to many educational materials and introduces human errors. To automate this process, we present the Skin Tone Analysis for Representation in EDucational materials (STAR-ED) framework, which assesses skin tone representation in medical education materials using machine learning. Given a document (e.g., a textbook in .pdf), STAR-ED applies content parsing to extract text, images, and table entities in a structured format. Next, it identifies images containing skin, segments the skin-containing portions of those images, and estimates the skin tone using machine learning. STAR-ED was developed using the Fitzpatrick17k dataset. We then externally tested STAR-ED on four commonly used medical textbooks. Results show strong performance in detecting skin images (0.96 ± 0.02 AUROC and 0.90 ± 0.06 F1 score) and classifying skin tones (0.87 ± 0.01 AUROC and 0.91 ± 0.00 F1 score). STAR-ED quantifies the imbalanced representation of skin tones in four medical textbooks: brown and black skin tones (Fitzpatrick V-VI) images constitute only 10.5% of all skin images. We envision this technology as a tool for medical educators, publishers, and practitioners to assess skin tone diversity in their educational materials.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3