DRG-LLaMA : tuning LLaMA model to predict diagnosis-related group for hospitalized patients

Author:

Wang HanyinORCID,Gao Chufan,Dantona Christopher,Hull Bryan,Sun Jimeng

Abstract

AbstractIn the U.S. inpatient payment system, the Diagnosis-Related Group (DRG) is pivotal, but its assignment process is inefficient. The study introduces , an advanced large language model (LLM) fine-tuned on clinical notes to enhance DRGs assignment. Utilizing LLaMA as the foundational model and optimizing it through Low-Rank Adaptation (LoRA) on 236,192 MIMIC-IV discharge summaries, our -7B model exhibited a noteworthy macro-averaged F1 score of 0.327, a top-1 prediction accuracy of 52.0%, and a macro-averaged Area Under the Curve (AUC) of 0.986, with a maximum input token length of 512. This model surpassed the performance of prior leading models in DRG prediction, showing a relative improvement of 40.3% and 35.7% in macro-averaged F1 score compared to ClinicalBERT and CAML, respectively. Applied to base DRG and complication or comorbidity (CC)/major complication or comorbidity (MCC) prediction, achieved a top-1 prediction accuracy of 67.8% and 67.5%, respectively. Additionally, our findings indicate that ’s performance correlates with increased model parameters and input context lengths.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. Brown, T. et al. Language models are few-shot learners. Adv. Neural Inform. Process. Syst. 33, 1877–1901 (2020).

2. Ouyang, L. et al. Training language models to follow instructions with human feedback. Adv. Neural Inform. Process. Syst. 35, 27730–27744 (2022).

3. Nori, H., King, N., McKinney, S.M., Carignan, D., Horvitz, E. Capabilities of gpt-4 on medical challenge problems. arXiv preprint arXiv:2303.13375 (2023).

4. Singhal, K. et al. Towards expert-level medical question answering with large language models. arXiv preprint arXiv:2305.09617 (2023).

5. Tu, T. et al. Towards generalist biomedical ai. arXiv preprint arXiv:2307.14334 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3