Optimizing skin disease diagnosis: harnessing online community data with contrastive learning and clustering techniques

Author:

Shen Yue,Li Huanyu,Sun Can,Ji Hongtao,Zhang Daojun,Hu Kun,Tang Yiqi,Chen Yu,Wei ZikunORCID,Lv JunweiORCID

Abstract

AbstractSkin diseases pose significant challenges in China. Internet health forums offer a platform for millions of users to discuss skin diseases and share images for early intervention, leaving large amount of valuable dermatology images. However, data quality and annotation challenges limit the potential of these resources for developing diagnostic models. In this study, we proposed a deep-learning model that utilized unannotated dermatology images from diverse online sources. We adopted a contrastive learning approach to learn general representations from unlabeled images and fine-tuned the model on coarsely annotated images from Internet forums. Our model classified 22 common skin diseases. To improve annotation quality, we used a clustering method with a small set of standardized validation images. We tested the model on images collected by 33 experienced dermatologists from 15 tertiary hospitals and achieved a 45.05% top-1 accuracy, outperforming the published baseline model by 3%. Accuracy increased with additional validation images, reaching 49.64% with 50 images per category. Our model also demonstrated transferability to new tasks, such as detecting monkeypox, with a 61.76% top-1 accuracy using only 50 additional images in the training process. We also tested our model on benchmark datasets to show the generalization ability. Our findings highlight the potential of unannotated images from online forums for future dermatology applications and demonstrate the effectiveness of our model for early diagnosis and potential outbreak mitigation.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3