Abstract
AbstractAcute exacerbations (AE) of asthma, remain one of the biggest concerns for patients living with asthma. As such, identifying the causes, the molecular mechanisms involved and new therapeutic interventions to prevent AE is a high priority. Immunity to intestinal helminths involves the reactivation of type-2 immune responses leading to smooth muscle contraction and mucus hypersecretion–physiological processes very similar to acute exacerbations in the airways following allergen exposure. In this study, we employed a murine model of intestinal helminth infection, using Heligmosomoides polygyrus, to identify miRNAs during active expulsion, as a system for the identification of miRNAs that may contribute to AE in the airways. Concomitant with type-2 immunity and expulsion of H. polygyrus, we identified miR-99a-5p, miR-148a-3p and miR-155-5p that were differentially regulated. Systemic inhibition of these miRNAs, alone or in combination, had minimal impact on expulsion of H. polygyrus, but inhibition of miR-99a-5p or miR-155-5p significantly reduced house dust mite (HDM)-driven acute inflammation, modelling human acute exacerbations. Immunological, pathological and transcriptional analysis identified that miR-155-5p or miR-99a-5p contribute significantly to HDM-driven AE and that transient inhibition of these miRNAs may provide relief from allergen-driven AE, without compromising anti-helminth immunity in the gut.
Publisher
Springer Science and Business Media LLC
Subject
Immunology,Immunology and Allergy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献