Extending loophole-free nonlocal correlations to arbitrarily large distances

Author:

Chaturvedi AnubhavORCID,Viola Giuseppe,Pawłowski MarcinORCID

Abstract

AbstractQuantum theory allows spatially separated observers to share nonlocal correlations, which enable them to accomplish classically inconceivable information processing and cryptographic feats. However, the distances over which nonlocal correlations can be realized remain severely limited due to their high fragility to noise and high threshold detection efficiencies. To enable loophole-free nonlocality across large distances, we introduce Bell experiments wherein the spatially separated parties randomly choose the location of their measurement devices. We demonstrate that when devices close to the source are perfect and witness extremal nonlocal correlations, such correlations can be extended to devices placed arbitrarily far from the source. To accommodate imperfections close to the source, we demonstrate an analytic trade-off: the higher the loophole-free nonlocality close to the source, the lower the threshold requirements away from the source. We utilize this trade-off and formulate numerical methods to estimate the critical requirements of individual measurement devices in such experiments.

Funder

Narodowe Centrum Nauki

Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT)

Fundacja na rzecz Nauki Polskiej

QuantERA, an ERA-Net co-fund in Quantum Technologies (www.quantera.eu), under project eDICT (contract No. Quantera/2/2020).

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference45 articles.

1. Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).

2. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).

3. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

4. Mayers, D. & Yao, A. Quantum cryptography with imperfect apparatus. In Proceedings 39th Annual Symposium on Foundations of Computer Science, 503 (IEEE, Los Alamitos, CA, 1998).

5. Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3