Real-time calibration with spectator qubits

Author:

Majumder SwarnadeepORCID,Andreta de Castro LeonardoORCID,Brown Kenneth R.

Abstract

AbstractAccurate control of quantum systems requires a precise measurement of the parameters that govern the dynamics, including control fields and interactions with the environment. Parameters will drift in time and experiments interleave protocols that perform parameter estimation, with protocols that measure the dynamics of interest. Here we specialize to a system made of qubits where the dynamics correspond to a quantum computation. We propose setting aside some qubits, which we call spectator qubits, to be measured periodically during the computation, to act as probes of the changing experimental and environmental parameters. By using control strategies that minimize the sensitivity of the qubits involved in the computation, we can acquire sufficient information from the spectator qubits to update our estimates of the parameters and improve our control. As a result, we can increase the length of experiments where the dynamics of the data qubits are highly reliable. In particular, we simulate how spectator qubits can keep the error level of operations on data qubits below a 10−4 threshold in two scenarios involving coherent errors: a classical magnetic field gradient dynamically decoupled with sequences of two or four π-pulses, and laser beam instability detected via crosstalk with neighboring atoms in an ion trap.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3