Abstract
AbstractDiscrete stochastic processes (DSP) are instrumental for modeling the dynamics of probabilistic systems and have a wide spectrum of applications in science and engineering. DSPs are usually analyzed via Monte-Carlo methods since the number of realizations increases exponentially with the number of time steps, and importance sampling is often required to reduce the variance. We propose a quantum algorithm for calculating the characteristic function of a DSP, which completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps. The quantum algorithm reduces the Monte-Carlo sampling to a Bernoulli trial while taking all stochastic trajectories into account. This approach guarantees the optimal variance without the need for importance sampling. The algorithm can be further furnished with the quantum amplitude estimation algorithm to provide quadratic speed-up in sampling. The Fourier approximation can be used to estimate an expectation value of any integrable function of the random variable. Applications in finance and correlated random walks are presented. Proof-of-principle experiments are performed using the IBM quantum cloud platform.
Funder
National Research Foundation
South African Research Chair Initiative of the Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献