Abstract
AbstractThe ultimate precision limit in estimating the Larmor frequency of N unentangled qubits is well established, and is highly important for magnetometers, gyroscopes, and other types of quantum sensors. However, this limit assumes perfect projective measurements of the quantum registers. This requirement is not practical in many physical systems, such as NMR spectroscopy, where a weakly interacting external probe is used as a measurement device. Here, we show that in the framework of quantum nano-NMR spectroscopy, in which these limitations are inherent, the ultimate precision limit is still achievable using control and a finely tuned measurement.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献