Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus

Author:

Grimsley Harper R.ORCID,Barron George S.ORCID,Barnes Edwin,Economou Sophia E.ORCID,Mayhall Nicholas J.ORCID

Abstract

AbstractVariational quantum eigensolvers (VQEs) represent a powerful class of hybrid quantum-classical algorithms for computing molecular energies. Various numerical issues exist for these methods, however, including barren plateaus and large numbers of local minima. In this work, we consider the Adaptive, Problem-Tailored Variational Quantum Eiegensolver (ADAPT-VQE) ansätze, and examine how they are impacted by these local minima. We find that while ADAPT-VQE does not remove local minima, the gradient-informed, one-operator-at-a-time circuit construction accomplishes two things: First, it provides an initialization strategy that can yield solutions with over an order of magnitude smaller error compared to random initialization, and which is applicable in situations where chemical intuition cannot help with initialization, i.e., when Hartree-Fock is a poor approximation to the ground state. Second, even if an ADAPT-VQE iteration converges to a local trap at one step, it can still “burrow” toward the exact solution by adding more operators, which preferentially deepens the occupied trap. This same mechanism helps highlight a surprising feature of ADAPT-VQE: It should not suffer optimization problems due to barren plateaus and random initialization. Even if such barren plateaus appear in the parameter landscape, our analysis suggests that ADAPT-VQE avoids such regions by design.

Funder

U.S. Department of Energy

Virginia Tech | Institute for Critical Technologies and Applied Science, Virginia Tech

DOE | Office of Science

National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3