Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide

Author:

Siampour HamidrezaORCID,O’Rourke Christopher,Brash Alistair J.,Makhonin Maxim N.,Dost RenéORCID,Hallett Dominic J.,Clarke EdmundORCID,Patil Pallavi K.,Skolnick Maurice S.,Fox A. Mark

Abstract

AbstractQuantum states of light and matter can be manipulated on the nanoscale to provide a technological resource for aiding the implementation of scalable photonic quantum technologies. Experimental progress relies on the quality and efficiency of the coupling between photons and internal spin states of quantum emitters. Here we demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs) that enables both Purcell-enhanced emission and strong chiral coupling. The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region. Simulations were used to map the chirality and Purcell enhancement depending on the position of a dipole emitter relative to the air holes. The highest Purcell factors and chirality occur in separate regions, but there is still a significant area where high values of both can be obtained. Based on this, we first demonstrate a record large radiative decay rate of 17 ± 2 ns−1 (60 ± 6 ps lifetime) corresponding to a 20 ± 2 fold Purcell enhancement. This was achieved by electric-field tuning of the QD to the slow-light region and quasi-resonant phonon-side band excitation. We then demonstrate a 5 ± 1 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes, substantially surpassing all previous measurements. Together these demonstrate the excellent prospects for using QDs in scalable implementations of on-chip spin-photonics relying on chiral quantum optics.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3