Abstract
AbstractSimulation of quantum systems is expected to be one of the most important applications of quantum computing, with much of the theoretical work so far having focused on fermionic and spin-$$\frac{1}{2}$$
1
2
systems. Here, we instead consider encodings of d-level (i.e., qudit) quantum operators into multi-qubit operators, studying resource requirements for approximating operator exponentials by Trotterization. We primarily focus on spin-s and truncated bosonic operators in second quantization, observing desirable properties for approaches based on the Gray code, which to our knowledge has not been used in this context previously. After outlining a methodology for implementing an arbitrary encoding, we investigate the interplay between Hamming distances, sparsity patterns, bosonic truncation, and other properties of local operators. Finally, we obtain resource counts for five common Hamiltonian classes used in physics and chemistry, while modeling the possibility of converting between encodings within a Trotter step. The most efficient encoding choice is heavily dependent on the application and highly sensitive to d, although clear trends are present. These operation count reductions are relevant for running algorithms on near-term quantum hardware because the savings effectively decrease the required circuit depth. Results and procedures outlined in this work may be useful for simulating a broad class of Hamiltonians on qubit-based digital quantum computers.
Funder
Intel Research
Vannevar Bush Faculty Fellowship and the Canada 150 Research Chairs Program.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献