Experimental investigation of wave-particle duality relations in asymmetric beam interference

Author:

Chen Dong-XuORCID,Zhang Yu,Zhao Jun-LongORCID,Wu Qi-Cheng,Fang Yu-LiangORCID,Yang Chui-PingORCID,Nori FrancoORCID

Abstract

AbstractWave-particle duality relations are fundamental for quantum physics. Previous experimental studies of duality relations mainly focus on the quadratic relation D2 + V2 ≤ 1, based on symmetric beam interference, while a linear form of the duality relation, predicated earlier theoretically, has never been experimentally tested. In addition, the difference between the quadratic form and the linear form has not been explored yet. In this work, with a designed asymmetric beam interference and by utilizing the polarization degree of freedom of the photon as a which-way detector, we experimentally confirm both forms of the duality relations. The results show that more path information is obtained in the quadratic case. Our findings reveal the difference between the two duality relations and have fundamental implications in better understanding these important duality relations.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3