Dressed-state control of effective dipolar interaction between strongly-coupled solid-state spins

Author:

Lee JunghyunORCID,Tatsuta Mamiko,Xu Andrew,Bauch Erik,Ku Mark J. H.,Walsworth Ronald L.ORCID

Abstract

AbstractStrong interactions between defect spins in many-body solid-state quantum systems are a crucial resource for exploring non-classical states. However, they face the key challenge of controlling interactions between the defect spins, since they are spatially fixed inside the host lattice. In this work, we present a dressed state approach to control the effective dipolar coupling between solid-state spins and demonstrate this scheme experimentally using two strongly-coupled nitrogen vacancy (NV) centers in diamond. Through Ramsey spectroscopy on the sensor spin, we detect the change of the effective dipolar field generated by the control spin prepared in different dressed states. To observe the change of interaction dynamics, we deploy spin-lock-based polarization transfer measurements between the two NV spins in different dressed states. This scheme allows us to control the distribution of interaction strengths in strongly interacting spin systems, which can be a valuable tool for generating multi-spin correlated states for quantum-enhanced sensing.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3