Benchmarking quantum logic operations relative to thresholds for fault tolerance

Author:

Hashim AkelORCID,Seritan StefanORCID,Proctor TimothyORCID,Rudinger KennethORCID,Goss NoahORCID,Naik Ravi K.,Kreikebaum John MarkORCID,Santiago David I.ORCID,Siddiqi Irfan

Abstract

AbstractContemporary methods for benchmarking noisy quantum processors typically measure average error rates or process infidelities. However, thresholds for fault-tolerant quantum error correction are given in terms of worst-case error rates—defined via the diamond norm—which can differ from average error rates by orders of magnitude. One method for resolving this discrepancy is to randomize the physical implementation of quantum gates, using techniques like randomized compiling (RC). In this work, we use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor. We find that, under RC, gate errors are accurately described by a stochastic Pauli noise model without coherent errors, and that spatially correlated coherent errors and non-Markovian errors are strongly suppressed. We further show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set. Our results show that randomized benchmarks are a viable route to both verifying that a quantum processor’s error rates are below a fault-tolerance threshold, and to bounding the failure rates of near-term algorithms, if—and only if—gates are implemented via randomization methods which tailor noise.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multipass quantum process tomography;Scientific Reports;2024-08-06

2. Operational Markovianization in randomized benchmarking;Quantum Science and Technology;2024-04-30

3. Quantum error mitigation in the regime of high noise using deep neural network: Trotterized dynamics;Quantum Information Processing;2024-02-28

4. Learning a Quantum Computer's Capability;IEEE Transactions on Quantum Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3