Abstract
AbstractNoise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics, and may affect the fundamental states of matter. Here we report in an experiment a quantum simulation of the two-dimensional non-Hermitian quantum anomalous Hall (QAH) model using the nuclear magnetic resonance processor. Unlike the usual experiments using auxiliary qubits, we develop a stochastic average approach based on the stochastic Schrödinger equation to realize the non-Hermitian dissipative quantum dynamics, which has advantages in saving the quantum simulation sources and simplifying the implementation of quantum gates. We demonstrate the stability of dynamical topology against weak noise and observe two types of dynamical topological transitions driven by strong noise. Moreover, a region where the emergent topology is always robust regardless of the noise strength is observed. Our work shows a feasible quantum simulation approach for dissipative quantum dynamics with stochastic Schrödinger equation and opens a route to investigate non-Hermitian dynamical topological physics.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Reference66 articles.
1. Landau, L. & Lifshitz, E. Statistical Physics, Course Theoretical Physics, vol. 5 (Pergamon Press 1999).
2. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
3. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
4. Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).
5. Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献