Robust entanglement distribution via telecom fibre assisted by an asynchronous counter-propagating laser light

Author:

Miyanishi KoichiroORCID,Tsujimoto Yoshiaki,Ikuta RikizoORCID,Miki Shigehito,Yabuno Masahiro,Yamashita Taro,Terai Hirotaka,Yamamoto TakashiORCID,Koashi MasatoORCID,Imoto Nobuyuki

Abstract

AbstractDistributing entangled photon pairs over noisy channels is an important task for various quantum information protocols. Encoding an entangled state in a decoherence-free subspace (DFS) formed by multiple photons is a promising way to circumvent the phase fluctuations and polarisation rotations in optical fibres. Recently, it has been shown that the use of a counter-propagating coherent light as an ancillary photon enables us to faithfully distribute entangled photon with success probability proportional to the transmittance of the optical fibres. Several proof-of-principle experiments have been demonstrated, in which entangled photon pairs from a sender side and the ancillary photon from a receiver side originate from the same laser source. In addition, bulk optics have been used to mimic the noises in optical fibres. Here, we demonstrate a DFS-based entanglement distribution over 1 km optical fibre using DFS formed by using fully independent light sources at the telecom band, and obtain a high-fidelity entangled state. This shows that the DFS-based scheme protects the entanglement against collective noise in 1 km optical fibre. In the experiment, we utilise an interference between asynchronous photons from continuous wave pumped spontaneous parametric down conversion (SPDC) and mode-locked coherent light pulse. After performing spectral and temporal filtering, the SPDC photons and light pulse are spectrally indistinguishable. This property allows us to observe high-visibility interference without performing active synchronisation between fully independent sources.

Funder

MEXT | Japan Society for the Promotion of Science

MEXT | JST | Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3