Approximate quantum Fourier transform with O(n log(n)) T gates

Author:

Nam YunseongORCID,Su YuanORCID,Maslov Dmitri

Abstract

AbstractThe ability to implement the Quantum Fourier Transform (QFT) efficiently on a quantum computer facilitates the advantages offered by a variety of fundamental quantum algorithms, such as those for integer factoring, computing discrete logarithm over Abelian groups, solving systems of linear equations, and phase estimation, to name a few. The standard fault-tolerant implementation of an n-qubit unitary QFT approximates the desired transformation by removing small-angle controlled rotations and synthesizing the remaining ones into Clifford+T gates, incurring the T-count complexity of $$O(n\,{\mathrm{log}}^{2}\,(n))$$ O ( n log 2 ( n ) ) . In this paper, we show how to obtain approximate QFT with the T-count of $$O(n\,{\mathrm{log}}\,(n))$$ O ( n log ( n ) ) . For brevity, the above figures omit the dependence on the approximation error ε, assuming the error is fixed. Our approach relies on quantum circuits with measurements and feedforward, and on reusing a special quantum state that induces the phase gradient transformation. We report asymptotic analysis as well as concrete circuits, demonstrating significant advantages in both theory and practice.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference38 articles.

1. Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

2. Kitaev, A. Quantum measurements and the Abelian Stabilizer Problem. Preprint at https://arxiv.org/abs/quant-ph/9511026 (1995).

3. Brassard G. & Hoyer P. An exact quantum polynomial-time algorithm for Simon’s Problem. In Proc. of Fifth Israeli Symposium on Theory of Computing and Systems, 12–23 (IEEE, Ramat-Gan, Israel, 1997). https://arxiv.org/quant-ph/9704027.

4. Grover, L. Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998).

5. Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 185 (2011).

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3