Engineering fast high-fidelity quantum operations with constrained interactions

Author:

Figueiredo Roque T.,Clerk Aashish A.,Ribeiro HugoORCID

Abstract

AbstractUnderstanding how to tailor quantum dynamics to achieve the desired evolution is a crucial problem in almost all quantum technologies. Oftentimes an otherwise ideal quantum dynamics is corrupted by unavoidable interactions, and finding ways to mitigate the unwanted effects of such interactions on the dynamics is a very active field of research. Here, we present a very general method for designing high-efficiency control sequences that are fully compatible with experimental constraints on available interactions and their tunability. Our approach relies on the Magnus expansion to find order by order the necessary corrections that result in a high-fidelity operation. In the end finding, the control fields are reduced to solve a set of linear equations. We illustrate our method by applying it to a number of physically relevant problems: the strong-driving limit of a two-level system, fast squeezing in a parametrically driven cavity, the leakage problem in transmon qubit gates, and the acceleration of SNAP gates in a qubit-cavity system.

Funder

Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Basic Energy Sciences.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple classical noise mitigation by multiobjective robust quantum optimal control;Physical Review Applied;2024-03-20

2. Simple framework for systematic high-fidelity gate operations;Quantum Science and Technology;2023-09-19

3. Iterative Adaptive Spectroscopy of Short Signals;Physical Review Letters;2023-08-04

4. Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and beyond;Physical Review Applied;2023-03-22

5. Quantum Algorithm for Fidelity Estimation;IEEE Transactions on Information Theory;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3