Quantum emulation of the transient dynamics in the multistate Landau-Zener model

Author:

Stehli AlexanderORCID,Brehm Jan David,Wolz Tim,Schneider Andre,Rotzinger HannesORCID,Weides MartinORCID,Ustinov Alexey V.

Abstract

AbstractQuantum simulation is one of the most promising near term applications of quantum computing. Especially, systems with a large Hilbert space are hard to solve for classical computers and thus ideal targets for a simulation with quantum hardware. In this work, we study experimentally the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity. The underlying Hamiltonian is emulated by superconducting quantum circuit, where a tunable transmon qubit is coupled to a bosonic mode ensemble comprising four lumped element microwave resonators. We investigate the model for different initial states: Due to our circuit design, we are not limited to merely exciting the qubit, but can also pump the harmonic modes via a dedicated drive line. Here, the nature of the transient dynamics depends on the average photon number in the excited resonator. The greater effective coupling strength between qubit and higher Fock states results in a quasi-adiabatic transition, where coherent quantum oscillations are suppressed without the introduction of additional loss channels. Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3