Compilation and scaling strategies for a silicon quantum processor with sparse two-dimensional connectivity

Author:

Crawford O.ORCID,Cruise J. R.ORCID,Mertig N.ORCID,Gonzalez-Zalba M. F.ORCID

Abstract

AbstractInspired by the challenge of scaling-up existing silicon quantum hardware, we propose a 2d spin-qubit architecture with low compilation overhead. The architecture is based on silicon nanowire split-gate transistors which form 1d chains of spin-qubits and allow the execution of two-qubit operations among neighbors. We introduce a silicon junction which can couple four nanowires into 2d arrangements via spin shuttling andSwapoperations. We then propose a modular sparse 2d spin-qubit architecture with unit cells of diagonally-oriented squares with nanowires along the edges and junctions on the corners. Targeting noisy intermediate-scale quantum (NISQ) demonstrators, we show that the proposed architecture allows for compilation strategies which outperform methods for 1d chains, and exhibits favorable scaling properties which enable trading-off compilation overhead and colocation of control electronics within each square by adjusting the nanowire length. An appealing feature of the proposed architecture is its manufacturability using complementary-metal-oxide-semiconductor (CMOS) fabrication processes.

Funder

EC | Horizon 2020 Framework Programme

Innovate UK

UKRI Future Leaders Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference109 articles.

1. Hirata, Y., Nakanishi, M., Yamashita, S. & Nakashima, Y. An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inform. Comp. 11, 142–166 (2011).

2. Beals, R. et al. Efficient distributed quantum computing. Proc. R. Soc. A: Math., Phys.Eng. Sci. 469, 20120686 (2013).

3. Brierley, S. Efficient implementation of quantum circuits with limited qubit interactions. Quantum Info. Comput. 17, 1096–1104 (2017).

4. Steiger, D. S., Häner, T. & Troyer, M. Advantages of a modular high-level quantum programming framework. Microprocess. Microsy. 66, 81–89 (2019).

5. Zulehner, A., Paler, A. & Wille, R. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE T. Comput. Aid. D. 38, 1226–1236 (2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3