Abstract
AbstractQuantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. Josephson junction asymmetry inherent to the device causes a deleterious nonlinear cross-talk when annealing the qubit. We implement a nonlinear annealing path to correct the asymmetry in situ, resulting in a substantial increase in the probability of the qubit being in the correct state given an applied flux bias. We also confirm the multi-level structure of our CSFQ circuit model by annealing it through small spectral gaps and observing quantum signatures of energy level crossings. Our results demonstrate an anneal-path correction scheme designed and implemented to improve control accuracy for high-coherence and high-control quantum annealers, which leads to an enhancement of success probability in annealing protocols.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Reference37 articles.
1. Apolloni, B., Cesa-Bianchi, N. & de Falco, D. A numerical implementation of quantum annealing. In Proc. Ascona/Locarno Conference. 97. http://homes.di.unimi.it/cesa-bianchi/Pubblicazioni/quantumAnnealing.pdf (1988).
2. Finnila, A. B., Gomez, M. A., Sebenik, C., Stenson, C. & Doll, J. D. Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994).
3. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998).
4. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic. Evolution. http://arxiv.org/abs/quant-ph/0001106 arXiv:quant-ph/0001106 (2000).
5. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献