Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation

Author:

Bal Mustafa,Murthy Akshay A.ORCID,Zhu Shaojiang,Crisa Francesco,You Xinyuan,Huang ZiwenORCID,Roy TanayORCID,Lee Jaeyel,Zanten David van,Pilipenko RomanORCID,Nekrashevich Ivan,Lunin Andrei,Bafia DanielORCID,Krasnikova Yulia,Kopas Cameron J.ORCID,Lachman Ella O.,Miller Duncan,Mutus Josh Y.,Reagor Matthew J.ORCID,Cansizoglu Hilal,Marshall JayssORCID,Pappas David P.,Vu Kim,Yadavalli Kameshwar,Oh Jin-SuORCID,Zhou LinORCID,Kramer Matthew J.ORCID,Lecocq Florent,Goronzy Dominic P.ORCID,Torres-Castanedo Carlos G.,Pritchard P. Graham,Dravid Vinayak P.ORCID,Rondinelli James M.ORCID,Bedzyk Michael J.ORCID,Hersam Mark C.ORCID,Zasadzinski John,Koch JensORCID,Sauls James A.ORCID,Romanenko AlexanderORCID,Grassellino Anna

Abstract

AbstractWe present a transmon qubit fabrication technique that yields systematic improvements in T1 relaxation times. We encapsulate the surface of niobium and prevent the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface, this comparative investigation examining different capping materials, such as tantalum, aluminum, titanium nitride, and gold, as well as substrates across different qubit foundries demonstrates the detrimental impact that niobium oxides have on coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T1 relaxation times 2–5 times longer than baseline qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 300 μs, with maximum values up to 600 μs. Our comparative structural and chemical analysis provides insight into why amorphous niobium oxides may induce higher losses compared to other amorphous oxides.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3