Extracting quantum dynamical resources: consumption of non-Markovianity for noise reduction

Author:

Berk Graeme D.,Milz SimonORCID,Pollock Felix A.ORCID,Modi KavanORCID

Abstract

AbstractA great many efforts are dedicated to developing noise reduction and mitigation methods. One remarkable achievement in this direction is dynamical decoupling (DD), although its applicability remains limited because fast control is required. Using resource theoretic tools, we show that non-Markovianity is a resource for noise reduction, raising the possibility that it can be leveraged for noise reduction where traditional DD methods fail. We propose a non-Markovian optimisation technique for finding DD pulses. Using a prototypical noise model, we numerically demonstrate that our optimisation-based methods are capable of drastically improving the exploitation of temporal correlations, extending the timescales at which noise suppression is viable by at least two orders of magnitude, compared to traditional DD which does not use any knowledge of the non-Markovian environment. Importantly, the corresponding tools are built on operational grounds and can be easily implemented to reduce noise in the current generation of quantum devices.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3