Quantum causal unravelling

Author:

Bai GeORCID,Wu Ya-DongORCID,Zhu Yan,Hayashi Masahito,Chiribella GiulioORCID

Abstract

AbstractComplex processes often arise from sequences of simpler interactions involving a few particles at a time. These interactions, however, may not be directly accessible to experiments. Here we develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process, under the assumption that the process has bounded information loss and induces causal dependencies whose strength is above a fixed (but otherwise arbitrary) threshold. Our method is based on a quantum algorithm whose complexity scales polynomially in the total number of input/output systems, in the dimension of the systems involved in each interaction, and in the inverse of the chosen threshold for the strength of the causal dependencies. Under additional assumptions, we also provide a second algorithm that has lower complexity and requires only local state preparation and local measurements. Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography. Similarly, they can be used to identify useful communication channels in quantum networks, and to test the internal structure of uncharacterized quantum circuits.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3