Abstract
AbstractComplex processes often arise from sequences of simpler interactions involving a few particles at a time. These interactions, however, may not be directly accessible to experiments. Here we develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process, under the assumption that the process has bounded information loss and induces causal dependencies whose strength is above a fixed (but otherwise arbitrary) threshold. Our method is based on a quantum algorithm whose complexity scales polynomially in the total number of input/output systems, in the dimension of the systems involved in each interaction, and in the inverse of the chosen threshold for the strength of the causal dependencies. Under additional assumptions, we also provide a second algorithm that has lower complexity and requires only local state preparation and local measurements. Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography. Similarly, they can be used to identify useful communication channels in quantum networks, and to test the internal structure of uncharacterized quantum circuits.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Reference47 articles.
1. Spirtes, P., Glymour, C. N., Scheines, R. & Heckerman, D. Causation, Prediction, and Search (MIT Press, 2000).
2. Pearl, J. Causality (Cambridge University Press, 2009).
3. Heinze-Deml, C., Maathuis, M. H. & Meinshausen, N. Causal structure learning. Annu. Rev. Stat. Appl. 5, 371–391 (2018).
4. Chickering, D. M. Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002).
5. Tsamardinos, I., Brown, L. E. & Aliferis, C. F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31–78 (2006).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献