Constraints on magic state protocols from the statistical mechanics of Wigner negativity

Author:

Koukoulekidis NikolaosORCID,Jennings David

Abstract

AbstractMagic states are key ingredients in schemes to realize universal fault-tolerant quantum computation. Theories of magic states attempt to quantify this computational element via monotones and determine how these states may be efficiently transformed into useful forms. Here, we develop a statistical mechanical framework based on majorization to describe Wigner negative magic states for qudits of odd prime dimension processed under Clifford circuits. We show that majorization allows us to both quantify disorder in the Wigner representation and derive upper bounds for magic distillation. These bounds are shown to be tighter than other bounds, such as from mana and thauma, and can be used to incorporate hardware physics, such as temperature dependence and system Hamiltonians. We also show that a subset of single-shot Rényi entropies remain well-defined on quasi-distributions, are fully meaningful in terms of data processing and can acquire negative values that signal magic. We find that the mana of a magic state is the measure of divergence of these Rényi entropies as one approaches the Shannon entropy for Wigner distributions, and discuss how distillation lower bounds could be obtained in this setting. This use of majorization for quasi-distributions could find application in other studies of non-classicality, and raises nontrivial questions in the context of classical statistical mechanics.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3