Abstract
AbstractGaAs quantum dots in nanowires are one of the most promising candidates for scalable quantum photonics. They have excellent optical properties, can be frequency-tuned to atomic transitions, and offer a robust platform for fabrication of multi-qubit devices that promise to unlock the full technological potential of quantum dots. Coherent resonant excitation is necessary for virtually any practical application because it allows, for instance, for on-demand generation of single and entangled photons, photonic clusters states, and electron spin manipulation. However, emission from nanowire structures under this excitation scheme has never been demonstrated. Here we show, for the first time, biexciton–exciton cascaded emission via resonant two-photon excitation and resonance fluorescence from an epitaxially grown GaAs quantum dot in an AlGaAs nanowire. We also report that resonant excitation schemes, combined with above-bandgap excitation, can be used to clean and enhance the emission of nanowire quantum dots.
Funder
Villum Fonden
Marie og M.B. Richters Fond
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献