Abstract
AbstractGene-expressing compartments assembled from simple, modular parts, are a versatile platform for creating minimal synthetic cells with life-like functions. By incorporating gene regulatory motifs into their encapsulated DNA templates, in situ gene expression and, thereby, synthetic cell function can be controlled according to specific stimuli. In this work, cell-free protein synthesis within synthetic cells was controlled using light by encoding genes of interest on light-activated DNA templates. Light-activated DNA contained a photocleavable blockade within the T7 promoter region that tightly repressed transcription until the blocking groups were removed with ultraviolet light. In this way, synthetic cells were activated remotely, in a spatiotemporally controlled manner. By applying this strategy to the expression of an acyl homoserine lactone synthase, BjaI, quorum-sensing-based communication between synthetic cells and bacteria was controlled with light. This work provides a framework for the remote-controlled production and delivery of small molecules from nonliving matter to living matter, with applications in biology and medicine.
Funder
RCUK | Engineering and Physical Sciences Research Council
Royal Society
RCUK | Biotechnology and Biological Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献