A machine learning estimator trained on synthetic data for real-time earthquake ground-shaking predictions in Southern California

Author:

Monterrubio-Velasco MarisolORCID,Callaghan Scott,Modesto David,Carrasco Jose CarlosORCID,Badia Rosa M.ORCID,Pallares PabloORCID,Vázquez-Novoa FernandoORCID,Quintana-Ortí Enrique S.,Pienkowska Marta,de la Puente Josep

Abstract

AbstractAfter large-magnitude earthquakes, a crucial task for impact assessment is to rapidly and accurately estimate the ground shaking in the affected region. To satisfy real-time constraints, intensity measures are traditionally evaluated with empirical Ground Motion Models that can drastically limit the accuracy of the estimated values. As an alternative, here we present Machine Learning strategies trained on physics-based simulations that require similar evaluation times. We trained and validated the proposed Machine Learning-based Estimator for ground shaking maps with one of the largest existing datasets (<100M simulated seismograms) from CyberShake developed by the Southern California Earthquake Center covering the Los Angeles basin. For a well-tailored synthetic database, our predictions outperform empirical Ground Motion Models provided that the events considered are compatible with the training data. Using the proposed strategy we show significant error reductions not only for synthetic, but also for five real historical earthquakes, relative to empirical Ground Motion Models.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3